The Tree Property on a Countable Segment of Successors of Singular Cardinals

نویسنده

  • MOHAMMAD GOLSHANI
چکیده

Starting from the existence of many supercompact cardinals, we construct a model of ZFC + GCH in which the tree property holds at a countable segment of successor of singular cardinals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The definable tree property for successors of cardinals

Strengthening a result of Amir Leshem [7], we prove that the consistency strength of holding GCH together with definable tree property for all successors of regular cardinals is precisely equal to the consistency strength of existence of proper class many Π 1 reflecting cardinals. Moreover it is proved that if κ is a supercompact cardinal and λ > κ is measurable, then there is a generic extensi...

متن کامل

The tree property at successors of singular cardinals

Assuming some large cardinals, a model of ZFC is obtained in which אω+1 carries no Aronszajn trees. It is also shown that if λ is a singular limit of strongly compact cardinals, then λ carries no Aronszajn trees.

متن کامل

Successors of singular cardinals and coloring theorems {II}

In this paper, we investigate the extent to which techniques used in [8], [2], and [3] — developed to prove coloring theorems at successors of singular cardinals of uncountable cofinality — can be extended to cover the countable cofinality case.

متن کامل

Review on Todd Eisworth’s Chapter for the Handbook of Set Theory: “successors of Singular Cardinals”

This chapter offers a comprehensive and lucid exposition of the questions and techniques involved in the study of combinatorics of successors of singular cardinals. What is so special about successors of singular cardinals? They are successor cardinals, but are also similar to inaccessible cardinals, in the sense that there is no maximal regular cardinal below them, meaning for instance that th...

متن کامل

The tree property at double successors of singular cardinals of uncountable cofinality

Assuming the existence of a strong cardinal κ and a measurable cardinal above it, we force a generic extension in which κ is a singular strong limit cardinal of any given cofinality, and such that the tree property holds at κ++.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017